This work presents the design, fabrication and measurement of gallium nitride (GaN) distributed Bragg reflector cavities integrated with input and output grating couplers. The devices are fabricated using a new, low-cost nanolithography technique: displacement Talbot lithography combined with direct laser writing lithography. The finite-difference time-domain method has been used to design all the components and measured and modelled results show good agreement. Such devices have applications in GaN integrated photonics and biosensing.